Equazioni

 

L’equazione è il modello algebrico di un problema e contiene tutti i dati e tutte le relazioni che servono per trovare la soluzione.

Si chiama equazione una uguaglianza fra due espressioni algebriche letterali che è verificata solo per particolari valori che si attribuiscono alle lettere. Quindi risolvere un’equazione significa determinare tutte le soluzioni o radici.

Le lettere che compaiono in un’equazione  sono dette incognite e per esempio:

2+ 7= + 4        è un’equazione ad un’ incognita

2y= +14         è un’equazione a due incognite

3x + 2z=44     è un’equazione a tre incognite

I numeri che moltiplicano l’incognita sono detti coefficienti.

I termini che non contengono l’incognita sono detti termini noti.

I valori che, assegnati all’incognita, rendono vera l’uguaglianza si dicono soluzioni o radici dell’equazione.

 

IL GRADO di un’equazione è il massimo grado dei suoi termini così:

x – 3=2x – 5                 è di primo grado

x² – 3x + 4 = 3x² – 5  è di secondo grado

4x³ + 5x² = x + 12      è di terzo grado

Un’equazione si dice:

  • intera se non appare l’incognita al denominatore \frac{1}{2}x ^{2}+x-1=\frac{3}{4}.
  • frazionaria, quando l’incognita compare al denominatore \frac{7}{x+1}+x=6
  • numerica se oltre all’incognita non compaiono altre lettere \frac{7}{8}x ^{2}+x=\frac{5}{2}
  • letterale se compaiono anche delle lettere 2ax³+5ab=abx+12b
  • determinata quando ammette soluzioni
  • impossibile quando non ammette soluzioni quindi non c’è alcun numero che attribuito alla x verifichi l’equazione 3(x-2)=3x+1
  • indeterminata quando è verificata da qualsiasi valore che si attribuisce all’incognita; cioè quando è un’identità 5x-2=3(x-1)+2x+1

Due equazioni di primo grado ad un’incognita si dicono equivalenti se hanno la stessa radice:

4x-3=5  ⇒ x=+2;       3x+1=+7⇒ x=+2  infatti è facile verificare che ammettono entrambi la stessa radice x=+2

Risolvere un’equazione significa determinare tutte le sue soluzioni o radici.

Vedi gli esercizi

 

Programma matematica terza media

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

Questo sito utilizza i cookie per fonire la migliore esperienza di navigazione possibile. Continuando a utilizzare questo sito senza modificare le impostazioni dei cookie o clicchi su "Accetta" permetti al loro utilizzo.

Chiudi